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Introduction 

 Instability of compressible or incompressible flows has been 
studied extensively by a number of research workers in past few decades. 
In almost all such investigations, the Boussinesq’s approximation is used to 
simplify the equations of motions. Plainswamy and Puroshotham

1
 have 

examined the stability of shear flow of stratified fluid with fine dust and the 
effect of fine dust to increase the region of instability. The effect of particle 
mass and heat capacity on the onset of Benard convection has been 
considered by Scanlon and Segel

2
. A layer of Rivlin-Ericksen elastico-

viscous, compressible fluid heated and soluted from below in the presence 
of suspended particles (fine dust) is considered by Sharma and Sharma

3
. 

Sharma and Rani
4
 examined the study of double-diffusive convection with 

fine dust (suspended particles). Sharma and Sharma
5
 have examined the 

effect of suspended particles on couple-stress fluid heated from below in 
the presence of rotation and magnetic field. The theoretical and 
experimental study of the onset of Benard convection in Newtonian fluids, 
under varying assumptions of hydrodynamics, has been given by 
Chandrasekhar

6
. The fluid has been considered to be Newtonian 

throughout the study. Sharma and Kumar
7
 examined the effect of 

suspended particles on the thermal instability of Rivlin-Ericksen elastico-
viscous fluid. Sharma and Sharma

8
 have examined the couple-stress fluid 

heated from below in porous medium. The thermal convection in couple-
stress fluid in porous medium in hydromagnetics is considered by Sharma 
and thakur

9
.Rana Goel and Agrawal

10
 have studied

 
the study of Rivlin-

Ericksen Elastico viscous fluid heated and soluted from below in the 
presence of suspended particle with the effect of compressibility. With the 
growing importance of non-Newtonian fluids in modern technology and 
industries, the investigations on such fluids are desirable.Stokes

11 

proposed and postulated the theory of couple-stress fluid. In almost all 
such investigations, the Boussinesq’s approximation is used to simplify the 
equations of motion. Jeffrey

12
 tried to provide a justification of the 

Boussinesq’s approximation for steady motion of the fluids. In the present 
analysis, we have examined, within the framework of linear analysis, the 
thermal instability of couple-stress fluid heated from below in the presence 
of rotation and magnetic field with the effect of suspended particles.    

  

 
Formulation of the Problem 

Consider an infinite, horizontal, incompressible couple-stress fluid 
layer of thickness d, heated from below so that, the temperature and the 
density at the bottom surface z = 0 are 

0T  and 
0  respectively and at the 

upper surface z = d are 
dT  and

d .  Also the temperature gradient 

dT

dz
 

 is considered.  

     The equations of couple-stress fluid, equations of motion and continuity 
for the particles and equation of heat conduction are: 

   2 2

d

0 0 0 0

q 1 p KN
q q p g 1 v q q q

t

 

   

   
               

    

 …(1) 

                  q 0                …(2) 

Abstract 
In this paper, the thermal instability of couple stress fluid layer 

heated from below in the presence of magnetic field has been discussed. 
Necessary condition for instability and sufficient condition for stability 
have been obtained for oscillatory as well as for non-oscillatory modes. 
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   d
d d d

q
mN q q KN q q

t

 
     

   …(3) 

              d

N
Nq 0,

t


 



            …(4) 

  pt 2

d

0 v

mNcT
q T q T T

t c t




  
       

  

   …(5) 

where  

g  = (0, 0, -g), acceleration due to gravity, 

mN  =  mass of the particle per unit volume,  

vc  = heat capacity of the fluid,  

ptc  = heat capacity of the particle 

'  = couple- stress viscosity 

K = thermal diffusivity,  
T      = temperature,  
 The equation of basic state is given by  

  0 01 T T      
      …(6) 

 where suffix zero indicates the reference 
state. Further, the basic solution is   

   

 
d

0 0

q 0,0,0 , q 0,0,0 ,

T T z, 1 z   

  


    

 …(7) 

and 
0N N , a constant  

Perturbations and Normal Mode Analysis 

      Now we suppose that the solution in the 
basic state is slightly perturbed so that every physical 
quantity is assumed to be the sum of a mean and a 
fluctuating component, later designated as primed 
quantity and assumed to be very small in comparison 
to its basic state value. The small disturbances are 
assumed to be the functions of the space as well as 
time variables.  
Let  ,N, p, ,  q(u,v,w)   and qd (l,r,s)   denote the 

perturbations in density, suspended particles, number 
density N0 , pressure p, temperature T, couple stress 
fluid velocity (0,0,0)  and particle velocity (0,0,0) 
respectively. Thus, the perturbation    in 

temperature is given by    
                                    =   - 

0                   …(8)                                                                                                          

The perturbations are analysed in terms of the normal 
modes, we assume that the perturbations quantities 
are of the form 

     w, W z , z    
exp  x yik x ik y nt      …(9) 

where 
xk  and 

yk  are wave number in x and y 

directions respectively and 2 2

x yk k k   is the 

resultant wave number and n is, in general, a complex 
constant. 

For the considered form of perturbations 
given in equation (9), linearized equations   become   

 2 2 0
d

0 0 0

KNq 1
p g v q q q ,

t


 

  

  
          

  

 …(10) 

q 0,          …(11) 

 d
0 0 d

q
mN KN q q

t


 



,      …(12) 

    21 h w hs
t


  


    



,     …(13) 

where  

0 v

q

c



  

and  0 pt

0 v

mN c
h

c
 , 

On eliminating various physical quantities 
from these equations, we get the final stability 
equation as  

     
2 2

2
2 2 2 2 2 2

1

M g d a
D a 1 F D a D a W

1 v

 


 

  
         

  

 …(14) 

 
 

 

2
12 2

1

1

Hd
D a Hp W

1

 
 

  


   



     …(15) 

where   a kd , 
2nd

v
  , 

m



 , 

1 2

v

d


  , 0

0

mN
M


 , 

1

v
p


 , 

H 1 h  , 
'

2

0

F
d v




  and  d

D
dz

 . 

 The boundary conditions for the equations 
(14) and (15) are  

           W 0, 0   at z 0  and z 1      …(16) 

These boundary conditions in non-dimensional form 
become  

            2 4D W D W 0  at z 0  and z 1 .     …(17) 

Now, multiplying equation (14) by W* 
(complex conjugate of W) using equation (15) with the 
boundary conditions (15) and (16) we obtain the 
stability equation  

 
2

1
1 2 3 4 1 5

1 1

1 *M g a
1 I I FI I Hp *I

1 v H *

  
 

    

   
       

    

,    …(18) 

where   

 
1

2 22

1

0

I DW a W dz 
,

 
1

2 22 2 4

2

0

I D W 2a DW a W dz  

,

 
1

2 2 2 23 2 2 4 6

3

0

I D W 3a D W 3a DW a W dz   
, 

 
1

2 22

4

0

I D a dz  
, 

and 
1

2

5

0

I dz 
, 

The integrals 
1 5I I  are all positive definite.          

On substituting 
ii   in equation (18), 

where 
i  is real, we get 

 
2

1 i
i 1 2 3 4 1 i 5

1 i 1 i

1 iM g a
i 1 I I FI I iHp I

1 i v H i

  
 

    

   
       

    

or       

 1 i
i 1 2 32 2 2 2

1 i 1 i

MM
i 1 i I I FI

1 1

 


   

 
    

  

 

 
 

2 22
1 i1 i

4 1 i 52 2 2 2 2 2

1 i 1 i

1 HHg a
i I iHp I

v H H

   


    

 
   

  

.,.(19) 

 Thus, in other words means that the modes 
are taken to be neutral. 
 Equating the imaginary part of equation (19) 
from both sides, we get  

  2 22
1 1 i

i 1 4 1 52 2 2 2 2 2 2 2

1 i 1 i 1 i

1 H HM g a
1 I I .Hp I 0

1 v H H

   


      

    
      

       

…(20) 

If  
i 0  , then equation (20) provides  
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  2 22
1 1 i

1 4 1 52 2 2 2 2 2 2 2

1 i 1 i 1 i

1 H HM g a
1 I I .Hp I 0

1 v H H

   

      

   
     

     

 

or    2 2
1 1 i

1 4 1 52 2 2 2 2

1 1 1

1 H HM
1 I A I .Hp I 0

1 x H x H x

  

  

   
     

     

  

where  
2g a

A
v

 


              …(21) 

and  
2

ix  , 

On simplification, equation (21), we get  

                  2Px Qx R 0                …(22) 

where  

 
2

4

1 1 5 1

g a
P I Hp I

v

 




 
  
 

 

     
2

2 2 2

1 1 1 4 1 5 1

g a
Q 1 M H I H 1 I 1 H Hp I

v

 
  


         

 

and   

    
2

2 2

1 1 4 1 5

g a
R 1 M H I H 1 I H p I

v

 



    

 

Analytical Discussion 

      In this section, we shall prove some 
important theorems with the help of equation (22). 
      Clearly, P,Q and R all are positive under the 
condition that B is positive. In that case equation (22) 
has no positive roots and there are either negative or 

complex roots which is impossible because i  is 

real, so that  2

i x   is positive.  

 Now, we prove the following theorems :   
Theorem 1 

 If the coefficients P, Q and R in equation (22) 
are either all positive or all negative then the neutral 
modes do not exist. 
Proof 

Let the modes be neutral, so that
r 0  . Then if all 

the coefficients P, Q and R are either positive or 
negative then equation (22) do not admit any positive 
root and the roots will be either all negative or one 
negative and one complex. In either case, it leads to 
the contradiction to the fact that x being equal to 

 2

i i is real   is positive definite. 

      This contradiction is due to the fact that the 
existence of neutral modes has been assumed. 
Therefore, under these conditions of the theorem, 
neutral modes do not exist. 
Theorem 2  

 The neutral modes are oscillatory under the 
condition R 0 . 

Proof :   It R 0 , then equation (22) implies that 

i 0  . It means that the neutral modes are 

oscillatory. 
Remark : That all the three coefficients P, Q and R 

are either positive or negative is possible in many 
physical situation. For example, it   is positive then 

all the three coefficients P, Q and R are positive 
definite. The above discussion leads to the fact that 
neutral modes do not exist under the condition 

0  . 

      Likewise it is also possible to have all the 
three coefficients as negative. For example if the 

condition 0   and  

2

1 1 5

g a
I .Hp I

 

 


, 

     
2

2

1 1 4 1 5

g a
1 M H I H 1 I 1 H Hp I

 


 
        

  

and     
2

2 2

1 1 4 1 5

g a
1 M H I H 1 I H p I

 


 
     

 

Then P, Q and R are all negative. 
Now, if non-oscillatery modes  i 0 

exist then putting 
r   in equation (18),  

we get  

r 1 2 3

1 r

M
1 I I FI

1


 

 
   

 

 

 
2

1 r
4 1 r 5

1 r

1g a
I Hp I 0

H

  


  

 
   

 

 

or  3 2

r r rP Q R S 0             …(23) 

where 
2

2

1 1 5 1

g a
P I Hp I

 




 
    

 

 

      
2

1 2 3 1 1 4 1 5

g a
Q 1 H M I I FI I 2Hp I

 
 


       

 

      
2

1 2 3 1 1 5 1 4

g a
R H 1 M I I FI 1 H Hp I 2 I

 
 


       

 

and   
2

2 3 4

g a
S I FI H I

 


   

 

 We now prove the following theorems: 
Theorem 3 

 If P  and S  are of opposite signs, then 

non-oscillatory modes are stable.  
Proof 

 Let P  and S  be of opposite signs. Then it 

follows from equation (23) that the product of the roots 
is negative, which ensures that at lest one root is 
negative. Infact one root is negative, then the 
remaining two roots can be all positive or complex. 
      Therefore, the existence of positive and 
negative values of 

r  is ensured under the condition 

that P  and  S  are of opposite signs. In another 

words, non-oscillatory modes  i 0   are stable 

 r 0   under the condition that P  and S  are of 

opposite signs. It is to be noted that this result does 
not at all depend upon the other coefficients Q  and 

R . It is to be noted that the coefficients P  and S  

are of same signs it 0  . Therefore this theorem is 

not valid under this condition of  . 

Theorem 4  

 It P , Q , R  and S  are all positive, then the 

system is stable.  
Proof 

 It is to be observed that all the coefficients 
are positive definite under the condition 0  . It 

means that the equation (23) does not allow any 
positive value of 

r  implying, thereby, the stability of 

the system. Hence the system is stable.  
 
Conclusion  

 The paper concerns the linear stability 
analysis of thermosolutal Hydromagnetic couple- 
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stress fluid in the presence of suspended particles. 
Important results obtained in this paper include 
different conditions of stability, existence of oscillatory 
modes, non-oscillatory modes, discussion for stable 
and unstable modes, if exist in the problem. Finally we 
have taken the parturbations in terms of the normal 
mode analysis and then we have examined the 
thermal linear stability analysis of couple- stress fluid 
heated from below in the presence of rotation and 
magnetic field with the effect of suspended particles. 
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